Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces
The fingerprint spectral response of several materials with terahertz electromagnetic radiation indicates that terahertz technology is an effective tool for sensing applications. However, sensing few nanometer thin-films of dielectrics with much longer terahertz waves (1 THz = 0.3 mm) is challenging...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138451 https://doi.org/10.21979/N9/45EWUQ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The fingerprint spectral response of several materials with terahertz electromagnetic radiation indicates that terahertz technology is an effective tool for sensing applications. However, sensing few nanometer thin-films of dielectrics with much longer terahertz waves (1 THz = 0.3 mm) is challenging. Here, we demonstrate a quasibound state in the continuum (BIC) resonance for sensing of a nanometer scale thin analyte deposited on a flexible metasurface. The large sensitivity originates from the strong local field confinement of the quasi-BIC Fano resonance state and extremely low absorption loss of a low-index cyclic olefin copolymer substrate. A minimum thickness of 7 nm thin-film of germanium is sensed on the metasurface, which corresponds to a deep subwavelength scale of λ/43 000, where λ is the resonance wavelength. The low-loss, flexible, and large mechanical strength of the quasi-BIC microstructured metamaterial sensor could be an ideal platform for developing ultrasensitive wearable terahertz sensors. |
---|