Retinal vessel segmentation for medical diagnosis
This paper proposes the color fusion method, a supervised method for segmenting the retinal vessels. This method uses the feature fusion with dimensionality reduction, FFdr. The feature vectors are extracted from RGB channels using five feature extraction methods. The classification is done by a sup...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138513 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This paper proposes the color fusion method, a supervised method for segmenting the retinal vessels. This method uses the feature fusion with dimensionality reduction, FFdr. The feature vectors are extracted from RGB channels using five feature extraction methods. The classification is done by a support vector machine (SVM) applying both linear and non-linear functions. The DRIVE database which holds colored retinal images together with precisely segmented vessel images by experts is used to evaluate the proposed method. Comparing to the existing methods in literature, it performs the second best in terms of accuracy and sensitivity with the best average accuracy of 0.9506. It has the desirable minimum false positive rate. Its effectiveness and performance are demonstrated via receiver operating characteristic analysis. |
---|