Efficient electrochemical reduction of CO2 to HCOOH over Sub-2 nm SnO2 quantum wires with exposed grain boundaries
Electrochemical reduction of CO2 could mitigate environmental problems originating from CO2 emission. Although grain boundaries (GBs) have been tailored to tune binding energies of reaction intermediates and consequently accelerate the CO2 reduction reaction (CO2 RR), it is challenging to exclusivel...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138571 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Electrochemical reduction of CO2 could mitigate environmental problems originating from CO2 emission. Although grain boundaries (GBs) have been tailored to tune binding energies of reaction intermediates and consequently accelerate the CO2 reduction reaction (CO2 RR), it is challenging to exclusively clarify the correlation between GBs and enhanced reactivity in nanostructured materials with small dimension (<10 nm). Now, sub-2 nm SnO2 quantum wires (QWs) composed of individual quantum dots (QDs) and numerous GBs on the surface were synthesized and examined for CO2 RR toward HCOOH formation. In contrast to SnO2 nanoparticles (NPs) with a larger electrochemically active surface area (ECSA), the ultrathin SnO2 QWs with exposed GBs show enhanced current density (j), an improved Faradaic efficiency (FE) of over 80 % for HCOOH and ca. 90 % for C1 products as well as energy efficiency (EE) of over 50 % in a wide potential window; maximum values of FE (87.3 %) and EE (52.7 %) are achieved. |
---|