Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction
Metal-organic framework (MOF) composites have recently been considered as promising precursors to derive advanced metal/carbon-based materials for various energy-related applications. Here, a dual-MOF-assisted pyrolysis approach is developed to synthesize Co-Fe alloy@N-doped carbon hollow spheres. N...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138604 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Metal-organic framework (MOF) composites have recently been considered as promising precursors to derive advanced metal/carbon-based materials for various energy-related applications. Here, a dual-MOF-assisted pyrolysis approach is developed to synthesize Co-Fe alloy@N-doped carbon hollow spheres. Novel core-shell architectures consisting of polystyrene cores and Co-based MOF composite shells encapsulated with discrete Fe-based MOF nanocrystallites are first synthesized, followed by a thermal treatment to prepare hollow composite materials composed of Co-Fe alloy nanoparticles homogeneously distributed in porous N-doped carbon nanoshells. Benefitting from the unique structure and composition, the as-derived Co-Fe alloy@N-doped carbon hollow spheres exhibit enhanced electrocatalytic performance for oxygen reduction reaction. The present approach expands the toolbox for design and preparation of advanced MOF-derived functional materials for diverse applications. |
---|