Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage
The design and synthesis of hierarchical microboxes, assembled from SnS nanoplates coated with nitrogen-doped carbon (NC) as an anode material for sodium-ion batteries, is demonstrated. The template-engaged multistep synthesis of the SnS@NC microboxes involves sequential phase transformation, polydo...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138606 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The design and synthesis of hierarchical microboxes, assembled from SnS nanoplates coated with nitrogen-doped carbon (NC) as an anode material for sodium-ion batteries, is demonstrated. The template-engaged multistep synthesis of the SnS@NC microboxes involves sequential phase transformation, polydopamine coating, and thermal annealing in N2 . The SnS@NC composite with two-dimensional nano-sized subunits rationally integrates several advantages including shortening the diffusion path of electrons/Na+ ions, improving electric conductivity, and alleviating volume variation of the electrode material. As a result, the SnS@NC microboxes show efficient sodium storage performance with high capacity, good cycling stability, and excellent rate capability. |
---|