0.2 λ0 thick adaptive retroreflector made of spin-locked metasurface

The metasurface concept is employed to planarize retroflectors by stacking two metasurfaces with separation that is two orders larger than the wavelength. Here, a retroreflective metasurface using subwavelength-thick reconfigurable C-shaped resonators (RCRs) is reported, which reduces the overall th...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan, Libin, Zhu, Weiming, Muhammad Faeyz Karim, Cai, Hong, Gu, Alex Yuandong, Shen, Zhongxiang, Chong, Peter Han Joo, Kwong, Dim-Lee, Qiu, Cheng-Wei, Liu, Ai Qun
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/138701
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The metasurface concept is employed to planarize retroflectors by stacking two metasurfaces with separation that is two orders larger than the wavelength. Here, a retroreflective metasurface using subwavelength-thick reconfigurable C-shaped resonators (RCRs) is reported, which reduces the overall thickness from the previous record of 590 λ0 down to only 0.2 λ0 . The geometry of RCRs could be in situ controlled to realize equal amplitude and phase modulation onto transverse magnetic (TM)-polarized and transverse electric (TE)-polarized incidences. With the phase gradient being engineered, an in-plane momentum could be imparted to the incident wave, guaranteeing the spin state of the retro-reflected wave identical to that of the incident light. Such spin-locked metasurface is natively adaptive toward different incident angles to realize retroreflection by mechanically altering the geometry of RCRs. As a proof of concept, an ultrathin retroreflective metasurface is validated at 15 GHz, under various illumination angles at 10°, 12°, 15°, and 20°. Such adaptive spin-locked metasurface could find promising applications in spin-based optical devices, communication systems, remote sensing, RCS enhancement, and so on.