A short peptide hydrogel with high stiffness induced by 310-helices to beta-sheet transition in water
Biological gels generally require polymeric chains that produce long-lived phys- ical entanglements. Low molecular weight colloids offer an alternative to macro- molecular gels, but often require ad-hoc synthetic procedures. Here, a short biomimetic peptide composed of eight amino acid residues deri...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138702 https://doi.org/10.21979/N9/7OITQJ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Biological gels generally require polymeric chains that produce long-lived phys- ical entanglements. Low molecular weight colloids offer an alternative to macro- molecular gels, but often require ad-hoc synthetic procedures. Here, a short biomimetic peptide composed of eight amino acid residues derived from squid sucker ring teeth proteins is demonstrated to form hydrogel in water without any cross-linking agent or chemical modification and exhibits a stiffness on par with the stiffest peptide hydrogels. Combining solution and solid-state NMR, circular dichroism, infrared spectroscopy, and X-ray scattering, the peptide is shown to form a supramolecular, semiflexible gel assembled from unusual right-handed 310-helices stabilized in solution by π–π stacking. During gelation, the 310-helices undergo conformational transition into antiparallel β-sheets
with formation of new interpeptide hydrophobic interactions, and molecular dynamic simulations corroborate stabilization by cross β-sheet oligomeriza- tion. The current study broadens the range of secondary structures available to create supramolecular hydrogels, and introduces 310-helices as transient building blocks for gelation via a 310-to-β-sheet conformational transition. |
---|