Spectral bounds for quasi-twisted codes
New lower bounds on the minimum distance of quasi-twisted codes over finite fields are proposed. They are based on spectral analysis and eigenvalues of polynomial matrices. They generalize the Semenov-Trifonov and Zeh-Ling bounds in a manner similar to how the Roos and shift bounds extend the BCH an...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/138705 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | New lower bounds on the minimum distance of quasi-twisted codes over finite fields are proposed. They are based on spectral analysis and eigenvalues of polynomial matrices. They generalize the Semenov-Trifonov and Zeh-Ling bounds in a manner similar to how the Roos and shift bounds extend the BCH and HT bounds for cyclic codes. |
---|