Doping and switchable photovoltaic effect in lead-free perovskites enabled by metal cation transmutation

Creating defect tolerant lead-free halide perovskites is the major challenge for development of high-performance photovoltaics with nontoxic absorbers. Few compounds of Sn, Sb, or Bi possess ns2 electronic configuration similar to lead, but their poor photovoltaic performances inspire us to evaluate...

Full description

Saved in:
Bibliographic Details
Main Authors: Harikesh, Padinhare Cholakkal, Wu, Bo, Ghosh, Biplab, John, Rohit Abraham, Lie, Stener, Thirumal, Krishnamoorthy, Wong, Lydia Helena, Sum, Tze Chien, Mhaisalkar, Subodh, Mathews, Nripan
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/138774
https://doi.org/10.21979/N9/9H0XUN
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Creating defect tolerant lead-free halide perovskites is the major challenge for development of high-performance photovoltaics with nontoxic absorbers. Few compounds of Sn, Sb, or Bi possess ns2 electronic configuration similar to lead, but their poor photovoltaic performances inspire us to evaluate other factors influencing defect tolerance properties. The effect of heavy metal cation (Bi) transmutation and ionic migration on the defects and carrier properties in a 2D layered perovskite (NH4 )3 (Sb(1-x) Bix )2 I9 system is investigated. It is shown, for the first time, the possibility of engineering the carriers in halide perovskites via metal cation transmutation to successfully form intrinsic p- and n-type materials. It is also shown that this material possesses a direct-indirect bandgap enabling high absorption coefficient, extended carrier lifetimes >100 ns, and low trap densities similar to lead halide perovskites. This study also demonstrates the possibility of electrical poling to induce switchable photovoltaic effect without additional electron and hole transport layers.