Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources
Enhanced biological phosphorus removal (EBPR) is considered challenging in the tropics, based on a great number of laboratory-based studies showing that the polyphosphate-accumulating organism (PAO) Candidatus Accumulibacter does not compete well with glycogen accumulating organisms (GAOs) at temper...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138915 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-138915 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1389152020-05-14T02:13:06Z Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources Qiu, Guanglei Zuniga-Montanez, Rogelio Law, Yingyu Thi, Sara Swa Nguyen, Thi Quynh Ngoc Eganathan, Kaliyamoorthy Liu, Xianghui Nielsen, Per H. Williams, Rohan B. H. Wuertz, Stefan School of Civil and Environmental Engineering Singapore Centre for Environmental Life Sciences and Engineering Engineering::Civil engineering Enhanced Biological Phosphorus Removal High Temperature Enhanced biological phosphorus removal (EBPR) is considered challenging in the tropics, based on a great number of laboratory-based studies showing that the polyphosphate-accumulating organism (PAO) Candidatus Accumulibacter does not compete well with glycogen accumulating organisms (GAOs) at temperatures above 25 °C. Yet limited information is available on the PAO community and the metabolic capabilities in full-scale EBPR systems operating at high temperature. We studied the composition of the key functional PAO communities in three full-scale wastewater treatment plants (WWTPs) with high in-situ EBPR activity in Singapore, their EBPR-associated carbon usage characteristics, and the relationship between carbon usage and community composition. Each plant had a signature community composed of diverse putative PAOs with multiple operational taxonomic units (OTUs) affiliated to Ca. Accumulibacter, Tetrasphaera spp., Dechloromonas and Ca. Obscuribacter. Despite the differences in community composition, ex-situ anaerobic phosphorus (P)-release tests with 24 organic compounds from five categories (including four sugars, three alcohols, three volatile fatty acids (VFAs), eight amino acids and six other carboxylic acids) showed that a wide range of organic compounds could potentially contribute to EBPR. VFAs induced the highest P release (12.0-18.2 mg P/g MLSS for acetate with a P release-to-carbon uptake (P:C) ratio of 0.35-0.66 mol P/mol C, 9.4-18.5 mg P/g MLSS for propionate with a P:C ratio of 0.38-0.60, and 9.5-17.3 mg P/g MLSS for n-butyrate), followed by some carboxylic acids (10.1-18.1 mg P/g MLSS for pyruvate, 4.5-11.7 mg P/g MLSS for lactate and 3.7-12.4 mg P/g MLSS for fumarate) and amino acids (3.66-7.33 mg P/g MLSS for glutamate with a P:C ratio of 0.16-0.43 mol P/mol C, and 4.01-7.37 mg P/g MLSS for aspartate with a P:C ratio of 0.17-0.48 mol P/mol C). P-release profiles (induced by different carbon sources) correlated closely with PAO community composition. High micro-diversity was observed within the Ca. Accumulibacter lineage, which represented the most abundant PAOs. The total population of Ca. Accumulibacter taxa was highly correlated with P-release induced by VFAs, highlighting the latter's importance in tropical EBPR systems. There was a strong link between the relative abundance of individual Ca. Accumulibacter OTUs and the extent of P release induced by distinct carbon sources (e.g., OTU 81 and amino acids, and OTU 246 and ethanol), suggesting niche differentiation among Ca. Accumulibacter taxa. A diverse PAO community and the ability to use numerous organic compounds are considered key factors for stable EBPR in full-scale plants at elevated temperatures. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) 2020-05-14T02:13:06Z 2020-05-14T02:13:06Z 2019 Journal Article Qiu, G., Zuniga-Montanez, R., Law, Y., Thi, S. S., Nguyen, T. Q. N., Eganathan, K., . . ., Wuertz, S. (2019). Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Water Research, 149, 496-510. doi:10.1016/j.watres.2018.11.011 0043-1354 https://hdl.handle.net/10356/138915 10.1016/j.watres.2018.11.011 30476778 2-s2.0-85056827612 149 496 510 en Water research © 2018 Elsevier Ltd. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Civil engineering Enhanced Biological Phosphorus Removal High Temperature |
spellingShingle |
Engineering::Civil engineering Enhanced Biological Phosphorus Removal High Temperature Qiu, Guanglei Zuniga-Montanez, Rogelio Law, Yingyu Thi, Sara Swa Nguyen, Thi Quynh Ngoc Eganathan, Kaliyamoorthy Liu, Xianghui Nielsen, Per H. Williams, Rohan B. H. Wuertz, Stefan Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources |
description |
Enhanced biological phosphorus removal (EBPR) is considered challenging in the tropics, based on a great number of laboratory-based studies showing that the polyphosphate-accumulating organism (PAO) Candidatus Accumulibacter does not compete well with glycogen accumulating organisms (GAOs) at temperatures above 25 °C. Yet limited information is available on the PAO community and the metabolic capabilities in full-scale EBPR systems operating at high temperature. We studied the composition of the key functional PAO communities in three full-scale wastewater treatment plants (WWTPs) with high in-situ EBPR activity in Singapore, their EBPR-associated carbon usage characteristics, and the relationship between carbon usage and community composition. Each plant had a signature community composed of diverse putative PAOs with multiple operational taxonomic units (OTUs) affiliated to Ca. Accumulibacter, Tetrasphaera spp., Dechloromonas and Ca. Obscuribacter. Despite the differences in community composition, ex-situ anaerobic phosphorus (P)-release tests with 24 organic compounds from five categories (including four sugars, three alcohols, three volatile fatty acids (VFAs), eight amino acids and six other carboxylic acids) showed that a wide range of organic compounds could potentially contribute to EBPR. VFAs induced the highest P release (12.0-18.2 mg P/g MLSS for acetate with a P release-to-carbon uptake (P:C) ratio of 0.35-0.66 mol P/mol C, 9.4-18.5 mg P/g MLSS for propionate with a P:C ratio of 0.38-0.60, and 9.5-17.3 mg P/g MLSS for n-butyrate), followed by some carboxylic acids (10.1-18.1 mg P/g MLSS for pyruvate, 4.5-11.7 mg P/g MLSS for lactate and 3.7-12.4 mg P/g MLSS for fumarate) and amino acids (3.66-7.33 mg P/g MLSS for glutamate with a P:C ratio of 0.16-0.43 mol P/mol C, and 4.01-7.37 mg P/g MLSS for aspartate with a P:C ratio of 0.17-0.48 mol P/mol C). P-release profiles (induced by different carbon sources) correlated closely with PAO community composition. High micro-diversity was observed within the Ca. Accumulibacter lineage, which represented the most abundant PAOs. The total population of Ca. Accumulibacter taxa was highly correlated with P-release induced by VFAs, highlighting the latter's importance in tropical EBPR systems. There was a strong link between the relative abundance of individual Ca. Accumulibacter OTUs and the extent of P release induced by distinct carbon sources (e.g., OTU 81 and amino acids, and OTU 246 and ethanol), suggesting niche differentiation among Ca. Accumulibacter taxa. A diverse PAO community and the ability to use numerous organic compounds are considered key factors for stable EBPR in full-scale plants at elevated temperatures. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Qiu, Guanglei Zuniga-Montanez, Rogelio Law, Yingyu Thi, Sara Swa Nguyen, Thi Quynh Ngoc Eganathan, Kaliyamoorthy Liu, Xianghui Nielsen, Per H. Williams, Rohan B. H. Wuertz, Stefan |
format |
Article |
author |
Qiu, Guanglei Zuniga-Montanez, Rogelio Law, Yingyu Thi, Sara Swa Nguyen, Thi Quynh Ngoc Eganathan, Kaliyamoorthy Liu, Xianghui Nielsen, Per H. Williams, Rohan B. H. Wuertz, Stefan |
author_sort |
Qiu, Guanglei |
title |
Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources |
title_short |
Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources |
title_full |
Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources |
title_fullStr |
Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources |
title_full_unstemmed |
Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources |
title_sort |
polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/138915 |
_version_ |
1681057783302062080 |