Elongated graphitic hollow nanofibers from vegetable oil as prospective insertion host for constructing advanced high energy Li-Ion capacitor and battery
We report the facile and low temperature synthesis of one dimensional graphitic fibers with hollow structured morphology (VO-CF) by modified chemical vapor deposition using vegetable oil as a carbon source. Graphitization of the prepared phase is validated with various analytical tools. Prior to the...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/138963 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We report the facile and low temperature synthesis of one dimensional graphitic fibers with hollow structured morphology (VO-CF) by modified chemical vapor deposition using vegetable oil as a carbon source. Graphitization of the prepared phase is validated with various analytical tools. Prior to the fabrication of charge storage devices like Li-ion battery (LIB) and Li-ion capacitor (LIC), Li-insertion properties of VO-CF is studied in half-cell assembly. Mass adjustment between the electrodes are very crucial and adjusted for aforesaid energy storage devices. Pre-treatment or pre-lithiation is carried out using an electrochemical approach in Swagelok fittings with Li. LIB assembly with LiFePO4 delivered a maximum energy density of ∼233 Wh kg−1 whereas the LIC displayed the energy density of ∼112 Wh kg−1 when paired with activated carbon electrode. Both LIB and LIC assemblies rendered very decent cycling profiles for extended 500 and 10000 cycles, respectively. |
---|