Fabrication and characterization of Si/transition metal oxide solar cell

By 2030, Singapore aims to power 350,000 homes using solar energy [1]. As the world continues to shift its reliance of power generation from traditional sources such as burning of fossil fuel to renewable sources such as solar power, we need to continue to research and develop solar cells that excee...

Full description

Saved in:
Bibliographic Details
Main Author: Tay, Tammy Yun Jie
Other Authors: Rusli
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/138993
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-138993
record_format dspace
spelling sg-ntu-dr.10356-1389932023-07-07T18:41:34Z Fabrication and characterization of Si/transition metal oxide solar cell Tay, Tammy Yun Jie Rusli School of Electrical and Electronic Engineering erusli@ntu.edu.sg Engineering::Electrical and electronic engineering By 2030, Singapore aims to power 350,000 homes using solar energy [1]. As the world continues to shift its reliance of power generation from traditional sources such as burning of fossil fuel to renewable sources such as solar power, we need to continue to research and develop solar cells that exceed the performance of the present solar cell technology. Conventional method of solar cell fabrication is costly and as the search for cheaper and simpler fabrication process for solar cell continues, and there has been significant research development in using transition metal oxide (TMO) as a hole selective contact for solar cell fabrication. Due to its high work function, good selectivity and transparency, TMO is an ideal material for fabricating TMO/Si heterojunction solar cell as it can be fabricated at low temperature environment in contrast to Si solar cells. In this project, we fabricate and characterize TMO/Si heterojunction solar cell using TMOs that include vanadium oxide (V2O5) and tungsten oxide (WOx) fabricated using solution-based process. In our study, the thickness of TMO layer is varied and N2 annealing at 300°C was performed and its effects on the performance of the solar cell are investigated. The results obtained showed the performance of the solution based WOx (sWOx)/Si solar cell without N2 annealing obtained a remarkable efficiency of 9.22%. Bachelor of Engineering (Electrical and Electronic Engineering) 2020-05-14T08:54:23Z 2020-05-14T08:54:23Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/138993 en A2153-191 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering
spellingShingle Engineering::Electrical and electronic engineering
Tay, Tammy Yun Jie
Fabrication and characterization of Si/transition metal oxide solar cell
description By 2030, Singapore aims to power 350,000 homes using solar energy [1]. As the world continues to shift its reliance of power generation from traditional sources such as burning of fossil fuel to renewable sources such as solar power, we need to continue to research and develop solar cells that exceed the performance of the present solar cell technology. Conventional method of solar cell fabrication is costly and as the search for cheaper and simpler fabrication process for solar cell continues, and there has been significant research development in using transition metal oxide (TMO) as a hole selective contact for solar cell fabrication. Due to its high work function, good selectivity and transparency, TMO is an ideal material for fabricating TMO/Si heterojunction solar cell as it can be fabricated at low temperature environment in contrast to Si solar cells. In this project, we fabricate and characterize TMO/Si heterojunction solar cell using TMOs that include vanadium oxide (V2O5) and tungsten oxide (WOx) fabricated using solution-based process. In our study, the thickness of TMO layer is varied and N2 annealing at 300°C was performed and its effects on the performance of the solar cell are investigated. The results obtained showed the performance of the solution based WOx (sWOx)/Si solar cell without N2 annealing obtained a remarkable efficiency of 9.22%.
author2 Rusli
author_facet Rusli
Tay, Tammy Yun Jie
format Final Year Project
author Tay, Tammy Yun Jie
author_sort Tay, Tammy Yun Jie
title Fabrication and characterization of Si/transition metal oxide solar cell
title_short Fabrication and characterization of Si/transition metal oxide solar cell
title_full Fabrication and characterization of Si/transition metal oxide solar cell
title_fullStr Fabrication and characterization of Si/transition metal oxide solar cell
title_full_unstemmed Fabrication and characterization of Si/transition metal oxide solar cell
title_sort fabrication and characterization of si/transition metal oxide solar cell
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/138993
_version_ 1772825667960832000