Reinforcement trading for multi-market portfolio with crisis avoidance
The global financial market comes to a new crisis in 2020 triggered by the COVID-19 pandemic. During such a period, it is crucial for a portfolio manager to adopt policies that can preserve the value of the portfolio. Although innovations in computational finance using Machine Learning emerge rapidl...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139001 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-139001 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1390012020-05-14T09:22:59Z Reinforcement trading for multi-market portfolio with crisis avoidance Cai, Lingzhi Quek Hiok Chai School of Computer Science and Engineering ashcquek@ntu.edu.sg Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence The global financial market comes to a new crisis in 2020 triggered by the COVID-19 pandemic. During such a period, it is crucial for a portfolio manager to adopt policies that can preserve the value of the portfolio. Although innovations in computational finance using Machine Learning emerge rapidly, many of the works are using off-line supervised learning that is dependent on the training data in a specific period, and the model is not capable of direct trading. Additionally, many other works using Reinforcement Learning approaches are built with in-house tools and is lack of extensibility. As such, these models are neither transferrable to greater markets in a longer time range, nor are they capable to handle the black swan or grey rhino events that reappear almost every decade. In this paper, we proposed a Reinforcement Learning trading framework with a crisis avoidance algorithm. The framework adopts the open-sourced OpenAI Gym standard and Stable Baseline model that are open for third-party tools and future extension. We invented a Reinforcement Learning Environment to describe the market behavior with technical analysis and finite rule-based action sets. The framework further implements a crisis detection and avoidance algorithm. The experiment result shows that the models trained by the framework performed as well as buy-and-hold strategy benchmark in the bullish period of 2015-2019. Furthermore, very much accredited to the crisis avoidance algorithm, the models acted 17% better than buy-and-hold during all testing windows no less than 5 years in 2000-2019. Bachelor of Engineering (Computer Science) 2020-05-14T09:22:59Z 2020-05-14T09:22:59Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/139001 en SCSE19-0525 application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence |
spellingShingle |
Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence Cai, Lingzhi Reinforcement trading for multi-market portfolio with crisis avoidance |
description |
The global financial market comes to a new crisis in 2020 triggered by the COVID-19 pandemic. During such a period, it is crucial for a portfolio manager to adopt policies that can preserve the value of the portfolio. Although innovations in computational finance using Machine Learning emerge rapidly, many of the works are using off-line supervised learning that is dependent on the training data in a specific period, and the model is not capable of direct trading. Additionally, many other works using Reinforcement Learning approaches are built with in-house tools and is lack of extensibility. As such, these models are neither transferrable to greater markets in a longer time range, nor are they capable to handle the black swan or grey rhino events that reappear almost every decade. In this paper, we proposed a Reinforcement Learning trading framework with a crisis avoidance algorithm. The framework adopts the open-sourced OpenAI Gym standard and Stable Baseline model that are open for third-party tools and future extension. We invented a Reinforcement Learning Environment to describe the market behavior with technical analysis and finite rule-based action sets. The framework further implements a crisis detection and avoidance algorithm. The experiment result shows that the models trained by the framework performed as well as buy-and-hold strategy benchmark in the bullish period of 2015-2019. Furthermore, very much accredited to the crisis avoidance algorithm, the models acted 17% better than buy-and-hold during all testing windows no less than 5 years in 2000-2019. |
author2 |
Quek Hiok Chai |
author_facet |
Quek Hiok Chai Cai, Lingzhi |
format |
Final Year Project |
author |
Cai, Lingzhi |
author_sort |
Cai, Lingzhi |
title |
Reinforcement trading for multi-market portfolio with crisis avoidance |
title_short |
Reinforcement trading for multi-market portfolio with crisis avoidance |
title_full |
Reinforcement trading for multi-market portfolio with crisis avoidance |
title_fullStr |
Reinforcement trading for multi-market portfolio with crisis avoidance |
title_full_unstemmed |
Reinforcement trading for multi-market portfolio with crisis avoidance |
title_sort |
reinforcement trading for multi-market portfolio with crisis avoidance |
publisher |
Nanyang Technological University |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/139001 |
_version_ |
1681057135277899776 |