Erosion threshold and surface roughness maps in hydrodynamic cavitation abrasive finishing process

Recently due to the advancement in technologies, manufacturing processes have seen greater heights. One of which is the rise of Additive Manufacturing (AM). However, AM components tend to obtain higher surface roughness. For example, components manufactured using direct metal laser sintering (DMLS)...

全面介紹

Saved in:
書目詳細資料
主要作者: Syaiful Kamaruzzaman Sa'adon
其他作者: Yeo Swee Hock
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2020
主題:
在線閱讀:https://hdl.handle.net/10356/139093
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Recently due to the advancement in technologies, manufacturing processes have seen greater heights. One of which is the rise of Additive Manufacturing (AM). However, AM components tend to obtain higher surface roughness. For example, components manufactured using direct metal laser sintering (DMLS) process tend to obtain surface roughness of 14-16 μm. As such, there is a need to surface finish the external surface of the AM components. This study presents the outcome of the experimental analysis of the effect of the Hydrodynamic Abrasive Finishing (HAF) on the external surface of the AM components. Furthermore, this study also presents the outcome of the experimental analysis of the erosion rate and synergism due to Hydrodynamic Cavitation Abrasive Finishing (HCAF) on the external surfaces. The experiments are conducted on squarical as-built nickel-based alloy Inconel 625 parts manufactured using DMLS technique. Controlled erosion due to entrained Silicon Carbide (SiC) particles resulted up to 75 % reduction in the average surface roughness (Sa) on the external surfaces. Scanning electron microscope (SEM) observation illustrated controlled erosion due to entrained SiC particles removed majority of the surface irregularities on the samples. Application of controlled cavitation erosion with additional entrained SiC particles have resulted in up to 94 % synergistic effect. A synergistic effect from the HCAF is examined and explained using the surface morphology observations. Findings have illustrated that the addition of abrasive particles enhances the effect of the cavitation erosion in HCAF which increases the material removal and hence increases the surface quality.