Bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement
A new dual-polarized and dual-band second-order bandstop 3-D frequency-selective structure (FSS) is proposed with arbitrary band ratio. Compared with the square loop, the stepped-impedance (SI) loop resonator performs at lower basic resonant frequency and increases the first spurious resonant freque...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139279 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-139279 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1392792020-05-18T08:13:17Z Bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement Wang, Wensong Cao, Qunsheng Zheng, Yuanjin School of Electrical and Electronic Engineering Engineering::Electrical and electronic engineering 3-D Frequency-selective Structure (FSS) Bandstop A new dual-polarized and dual-band second-order bandstop 3-D frequency-selective structure (FSS) is proposed with arbitrary band ratio. Compared with the square loop, the stepped-impedance (SI) loop resonator performs at lower basic resonant frequency and increases the first spurious resonant frequency. Different half-wavelength SI loop resonators are analyzed, compared, and employed to design single/dual-band 3-D FSSs under TE polarization. A double-sided SI loop resonator with via holes is presented for constructing a dual-polarized single band FSS. By adjusting widths of low characteristic impedance sections, the FSS's band can be expanded into dual bands. Detailed analysis of the coupling between both identical resonators in series is provided for understanding the relationships between subresonators. In addition, the equivalent circuit models are developed to explain the operating principle and analyze parameter effects. The proposed FSS prototype is fabricated and then measured to verify the design methodology. The measured results agree with the simulated data and exhibit a dual-polarized and stable second-order bandstop response under different incident angles up to 30°. The thickness of the structure is 23% of the free-space wavelength at the first center frequency, and the center frequency ratio of both stopbands is only 1.08. 2020-05-18T08:13:17Z 2020-05-18T08:13:17Z 2018 Journal Article Wang, W., Cao, Q., & Zheng, Y. (2019). Bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement. IEEE Transactions on Antennas and Propagation, 67(2), 1053-1064. doi:10.1109/tap.2018.2880011 0018-926X https://hdl.handle.net/10356/139279 10.1109/TAP.2018.2880011 2-s2.0-85056357869 2 67 1053 1064 en IEEE Transactions on Antennas and Propagation © 2018 IEEE. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering 3-D Frequency-selective Structure (FSS) Bandstop |
spellingShingle |
Engineering::Electrical and electronic engineering 3-D Frequency-selective Structure (FSS) Bandstop Wang, Wensong Cao, Qunsheng Zheng, Yuanjin Bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement |
description |
A new dual-polarized and dual-band second-order bandstop 3-D frequency-selective structure (FSS) is proposed with arbitrary band ratio. Compared with the square loop, the stepped-impedance (SI) loop resonator performs at lower basic resonant frequency and increases the first spurious resonant frequency. Different half-wavelength SI loop resonators are analyzed, compared, and employed to design single/dual-band 3-D FSSs under TE polarization. A double-sided SI loop resonator with via holes is presented for constructing a dual-polarized single band FSS. By adjusting widths of low characteristic impedance sections, the FSS's band can be expanded into dual bands. Detailed analysis of the coupling between both identical resonators in series is provided for understanding the relationships between subresonators. In addition, the equivalent circuit models are developed to explain the operating principle and analyze parameter effects. The proposed FSS prototype is fabricated and then measured to verify the design methodology. The measured results agree with the simulated data and exhibit a dual-polarized and stable second-order bandstop response under different incident angles up to 30°. The thickness of the structure is 23% of the free-space wavelength at the first center frequency, and the center frequency ratio of both stopbands is only 1.08. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Wang, Wensong Cao, Qunsheng Zheng, Yuanjin |
format |
Article |
author |
Wang, Wensong Cao, Qunsheng Zheng, Yuanjin |
author_sort |
Wang, Wensong |
title |
Bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement |
title_short |
Bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement |
title_full |
Bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement |
title_fullStr |
Bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement |
title_full_unstemmed |
Bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement |
title_sort |
bandstop frequency-selective structures based on stepped-impedance loop resonators : design, analysis, and measurement |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/139279 |
_version_ |
1681058490254098432 |