Synthesis of novel drug-free cancer targeting nanotherapeutics
Cancer remains the leading cause of death worldwide. Mesoporous silica nanoparticles (MSNs) are seen as one of the promising candidates for anti-cancer therapy, due to its favourable cancer-killing properties. In this research paper, MSNs are being further modified, through attachment of PEG (Polyet...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/139298 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Cancer remains the leading cause of death worldwide. Mesoporous silica nanoparticles (MSNs) are seen as one of the promising candidates for anti-cancer therapy, due to its favourable cancer-killing properties. In this research paper, MSNs are being further modified, through attachment of PEG (Polyethylene Glycol) chains, in efforts to increase its ability to cause cancer cell death in-vivo, by reducing aggregation and therefore increasing the stability of MSNs. Preliminary in vitro results indicate that PEG conjugation can significantly enhance the stability of MSN in water as well as physiologically-emulated phosphate-buffered saline (PBS). These data lay a solid foundation for the follow-up fabrication of cancer-targeting physiologically-stable silica nanomedicine. |
---|