High fidelity electrical circuit model of lithium-ion batteries
The first Lithium-Ion Battery prototype was invented in 1985 and it was deemed to be the superior energy storage source compared to Lead Ion Battery as it was rechargeable. Fast forward to the current century where the green and renewable energy source is the new direction to create a sustainable wo...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139300 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-139300 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1393002023-07-07T16:40:44Z High fidelity electrical circuit model of lithium-ion batteries Aw, Li Ren Xu Yan School of Electrical and Electronic Engineering Rolls-Royce xuyan@ntu.edu.sg Engineering::Electrical and electronic engineering The first Lithium-Ion Battery prototype was invented in 1985 and it was deemed to be the superior energy storage source compared to Lead Ion Battery as it was rechargeable. Fast forward to the current century where the green and renewable energy source is the new direction to create a sustainable world that we live in. Converting from traditional fuel-based vehicles to the electric vehicle, this move will decrease reliance on fuel and reduce carbon emissions. However, Lithium-Ion Battery is still a rather new technology. It is an energy source based on the chemical reaction that exhibits electrical properties. Hence, it is difficult to determine the behavior of Lithium-Ion Battery. There is generally 2 model that helps explains the behaviors of Lithium-Ion Battery, Mathematical Model, and Equivalent Circuit Model. Equivalent Circuit Model is gaining popularity in recent years as it is generally easier to explain the process involved in the Lithium-Ion Battery. Electrochemical Impedance Spectroscopy is a method to extract the value of the total impedance of the circuit and gives the parameters in the Equivalent Circuit Model. Past research showed the possibility of using computer software to stimulate Electrochemical Impedance Spectroscopy in Lithium-Ion Battery. Hence, this research aims to use MATLAB as a tool to program a code that stimulates Electrochemical Impedance Spectroscopy and making use of the Equivalent Circuit Model to quantify the test data. Bachelor of Engineering (Electrical and Electronic Engineering) 2020-05-18T11:59:07Z 2020-05-18T11:59:07Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/139300 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering |
spellingShingle |
Engineering::Electrical and electronic engineering Aw, Li Ren High fidelity electrical circuit model of lithium-ion batteries |
description |
The first Lithium-Ion Battery prototype was invented in 1985 and it was deemed to be the superior energy storage source compared to Lead Ion Battery as it was rechargeable. Fast forward to the current century where the green and renewable energy source is the new direction to create a sustainable world that we live in. Converting from traditional fuel-based vehicles to the electric vehicle, this move will decrease reliance on fuel and reduce carbon emissions.
However, Lithium-Ion Battery is still a rather new technology. It is an energy source based on the chemical reaction that exhibits electrical properties. Hence, it is difficult to determine the behavior of Lithium-Ion Battery. There is generally 2 model that helps explains the behaviors of Lithium-Ion Battery, Mathematical Model, and Equivalent Circuit Model.
Equivalent Circuit Model is gaining popularity in recent years as it is generally easier to explain the process involved in the Lithium-Ion Battery. Electrochemical Impedance Spectroscopy is a method to extract the value of the total impedance of the circuit and gives the parameters in the Equivalent Circuit Model.
Past research showed the possibility of using computer software to stimulate Electrochemical Impedance Spectroscopy in Lithium-Ion Battery. Hence, this research aims to use MATLAB as a tool to program a code that stimulates Electrochemical Impedance Spectroscopy and making use of the Equivalent Circuit Model to quantify the test data. |
author2 |
Xu Yan |
author_facet |
Xu Yan Aw, Li Ren |
format |
Final Year Project |
author |
Aw, Li Ren |
author_sort |
Aw, Li Ren |
title |
High fidelity electrical circuit model of lithium-ion batteries |
title_short |
High fidelity electrical circuit model of lithium-ion batteries |
title_full |
High fidelity electrical circuit model of lithium-ion batteries |
title_fullStr |
High fidelity electrical circuit model of lithium-ion batteries |
title_full_unstemmed |
High fidelity electrical circuit model of lithium-ion batteries |
title_sort |
high fidelity electrical circuit model of lithium-ion batteries |
publisher |
Nanyang Technological University |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/139300 |
_version_ |
1772825957359419392 |