Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers
Plasmonic oligomers are near-field-coupled assemblies of metallic nanoparticles. Both their scattering/absorption spectra and the spatial distribution of the electromagnetic field can be tailored through the hybridization of plasmonic modes hosted by individual particles. Such a control on the field...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139316 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-139316 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1393162020-06-01T10:21:09Z Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers Zhang, Yinping Demesy, Guillaume Mohamed Haggui Gérard, Davy Béal, Jérémie Dodson, Stephanie Xiong, Qihua Plain, Jérome Bonod, Nicolas Bachelot, Renaud School of Electrical and Electronic Engineering School of Materials Science & Engineering School of Physical and Mathematical Sciences Science::Physics Nanoplasmonics Nanoantenna Plasmonic oligomers are near-field-coupled assemblies of metallic nanoparticles. Both their scattering/absorption spectra and the spatial distribution of the electromagnetic field can be tailored through the hybridization of plasmonic modes hosted by individual particles. Such a control on the field distribution opens new routes to deliver light at a deep subwavelength scale in targeted locations (“hot spots”). However, active control of hot spots in plasmonic oligomers and their observation in the near field are highly challenging. Here, we propose using a two-photon absorption process in azopolymer in the near-infrared to imprint from the far field the near-field distribution around a trimer antenna. The trimer antenna comprises two nanogaps separated by a quarter of the wavelength in the polymer and is designed to allow for the switch on a single nanogap when illuminated at 900 nm wavelength by a collimated beam at an oblique incidence. The monitoring of the topographical depletions in the photopolymer proves that it is possible to address a single hot spot in the structure and to remotely switch its location in the two nanogaps on demand, simply by illuminating with an opposite oblique incidence. This work shows that bonding and antibonding gap modes can be selectively excited, resulting in controlled hot spot locations. Two-photon absorption by azobenzene-containing photopolymer turns out to be a reliable approach for probing and investigating confined plasmonic fields in the near-infrared with a 20 nm resolution. 2020-05-19T00:42:58Z 2020-05-19T00:42:58Z 2017 Journal Article Zhang, Y., Demesy, G., Mohamed Haggui, Gérard, D., Béal, J., Dodson, S., . . . Bachelot, R. (2018). Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers. ACS Photonics, 5(3), 918-928. doi:10.1021/acsphotonics.7b01164 2330-4022 https://hdl.handle.net/10356/139316 10.1021/acsphotonics.7b01164 2-s2.0-85044298041 3 5 918 928 en ACS Photonics © 2017 American Chemical Society. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Science::Physics Nanoplasmonics Nanoantenna |
spellingShingle |
Science::Physics Nanoplasmonics Nanoantenna Zhang, Yinping Demesy, Guillaume Mohamed Haggui Gérard, Davy Béal, Jérémie Dodson, Stephanie Xiong, Qihua Plain, Jérome Bonod, Nicolas Bachelot, Renaud Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers |
description |
Plasmonic oligomers are near-field-coupled assemblies of metallic nanoparticles. Both their scattering/absorption spectra and the spatial distribution of the electromagnetic field can be tailored through the hybridization of plasmonic modes hosted by individual particles. Such a control on the field distribution opens new routes to deliver light at a deep subwavelength scale in targeted locations (“hot spots”). However, active control of hot spots in plasmonic oligomers and their observation in the near field are highly challenging. Here, we propose using a two-photon absorption process in azopolymer in the near-infrared to imprint from the far field the near-field distribution around a trimer antenna. The trimer antenna comprises two nanogaps separated by a quarter of the wavelength in the polymer and is designed to allow for the switch on a single nanogap when illuminated at 900 nm wavelength by a collimated beam at an oblique incidence. The monitoring of the topographical depletions in the photopolymer proves that it is possible to address a single hot spot in the structure and to remotely switch its location in the two nanogaps on demand, simply by illuminating with an opposite oblique incidence. This work shows that bonding and antibonding gap modes can be selectively excited, resulting in controlled hot spot locations. Two-photon absorption by azobenzene-containing photopolymer turns out to be a reliable approach for probing and investigating confined plasmonic fields in the near-infrared with a 20 nm resolution. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Zhang, Yinping Demesy, Guillaume Mohamed Haggui Gérard, Davy Béal, Jérémie Dodson, Stephanie Xiong, Qihua Plain, Jérome Bonod, Nicolas Bachelot, Renaud |
format |
Article |
author |
Zhang, Yinping Demesy, Guillaume Mohamed Haggui Gérard, Davy Béal, Jérémie Dodson, Stephanie Xiong, Qihua Plain, Jérome Bonod, Nicolas Bachelot, Renaud |
author_sort |
Zhang, Yinping |
title |
Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers |
title_short |
Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers |
title_full |
Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers |
title_fullStr |
Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers |
title_full_unstemmed |
Nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers |
title_sort |
nanoscale switching of near-infrared hot spots in plasmonic oligomers probed by two-photon absorption in photopolymers |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/139316 |
_version_ |
1681058101061484544 |