Cytotoxicity of group 5 transition metal ditellurides (MTe2; M=V, Nb, Ta)

Much research effort has been put in to study layered compounds with transition metal dichalcogenides (TMDs) being one of the most studied compounds. Due to their extraordinary properties such as excellent electrochemical properties, tuneable band gaps, and low shear resistance due to weak van der W...

Full description

Saved in:
Bibliographic Details
Main Authors: Chia, Hui Ling, Naziah Mohamad Latiff, Sofer, Zdenĕk, Pumera, Martin
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/139352
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Much research effort has been put in to study layered compounds with transition metal dichalcogenides (TMDs) being one of the most studied compounds. Due to their extraordinary properties such as excellent electrochemical properties, tuneable band gaps, and low shear resistance due to weak van der Waals interactions between layers, TMDs have been found to have wide applications such as electrocatalysts for hydrogen evolution reactions, supercapacitors, biosensors, field-effect transistors (FETs), photovoltaics, and lubricant additives. In very recent years, Group 5 transition metal ditellurides have received an immense amount of research attention. However to date, little has been known of the potential toxicities posed by these materials. As such, we conducted the cytotoxicity study by incubating various concentrations of the Group 5 transition metal ditellurides (MTe2 ; M=V, Nb, Ta) with human lung carcinoma epithelial A549 cells for 24 hours and the remaining cell viabilities after treatment was measured. Our findings indicate that VTe2 is highly toxic whereas NbTe2 and TaTe2 are deemed to exhibit mild toxicities. This study constitutes an exemplary first step towards the understanding of the Group 5 transition metal ditellurides' toxicity effects in preparation for their possible future commercialisation.