A novel distribution-embedded neural network for sensor-based activity recognition

Feature-engineering-based machine learning models and deep learning models have been explored for wearable-sensor-based human activity recognition. For both types of methods, one crucial research issue is how to extract proper features from the partitioned segments of multivariate sensor readings. E...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Qian, Hangwei, Pan, Sinno Jialin, Da, Bingshui, Miao, Chunyan
مؤلفون آخرون: School of Computer Science and Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/139354
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Feature-engineering-based machine learning models and deep learning models have been explored for wearable-sensor-based human activity recognition. For both types of methods, one crucial research issue is how to extract proper features from the partitioned segments of multivariate sensor readings. Existing methods have different drawbacks: 1) feature-engineering-based methods are able to extract meaningful features, such as statistical or structural information underlying the segments, but usually require manual designs of features for different applications, which is time consuming, and 2) deep learning models are able to learn temporal and/or spatial features from the sensor data automatically, but fail to capture statistical information. In this paper, we propose a novel deep learning model to automatically learn meaningful features including statistical features, temporal features and spatial correlation features for activity recognition in a unified framework. Extensive experiments are conducted on four datasets to demonstrate the effectiveness of our proposed method compared with state-of-the-art baselines.