Alternative to extended block sparse Bayesian learning and its relation to pattern-coupled sparse Bayesian learning

We consider the problem of recovering block sparse signals with unknown block partition and propose a better alternative to the extended block sparse Bayesian learning (EBSBL). The underlying relationship between the proposed method EBSBL and pattern-coupled sparse Bayesian learning (PC-SBL) is expl...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Lu, Zhao, Lifan, Rahardja, Susanto, Bi, Guoan
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/139369
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:We consider the problem of recovering block sparse signals with unknown block partition and propose a better alternative to the extended block sparse Bayesian learning (EBSBL). The underlying relationship between the proposed method EBSBL and pattern-coupled sparse Bayesian learning (PC-SBL) is explicitly revealed. The proposed method adopts a cluster-structured prior for sparse coefficients, which encourages dependencies among neighboring coefficients by properly manipulating the hyperparameters of the neighborhood. Due to entanglement of the hyperparameters, a joint sparsity assumption is made to yield a suboptimal analytic solution. The alternative algorithm avoids high dictionary coherence in EBSBL, reduces the unknowns of EBSBL, and explains the effectiveness of EBSBL. The proposed algorithm also avoids the vulnerability of parameter choice in PC-SBL. Results of comprehensive simulations demonstrate that the proposed algorithm achieves performance that is close to the best performance of PC-SBL. In addition, it outperforms EBSBL and other recently reported algorithms particularly under noisy and low sampling scenarios.