Asymptotically optimal algorithms for running max and min filters on random inputs
Given a d-dimensional array of size nd and an integer p, the running max (or min) filter is the set of maximum (or minimum) elements within a d-dimensional sliding window of edge length p inside the array. This problem is useful in many signal processing applications such as pattern analysis, adapti...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139417 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Given a d-dimensional array of size nd and an integer p, the running max (or min) filter is the set of maximum (or minimum) elements within a d-dimensional sliding window of edge length p inside the array. This problem is useful in many signal processing applications such as pattern analysis, adaptive signal processing, and morphological analysis. The current best algorithm for computing the one-dimensional (1-D) max (or min) filter, due to the work of [H. Yuan and M. J. Atallah, 'Running max/min filters using 1+o(1) comparisons per sample,' IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12, pp. 2544-2548, Dec. 2011], uses 1+o(1) comparisons per sample in the worst case. As a direct consequence, the d -dimensional max (or min) filter (max and min filters, respectively) can be computed in d+o(1) ( 2d+o(1), respectively) comparisons per sample. In this paper, we first present an algorithm for computing d -dimensional max and min filters simultaneously on i.i.d. inputs that uses 1.5+o(1) expected comparisons per sample. This is the first algorithm (on i.i.d. inputs) that gets rid of the dependence on d in the dominating term, with respect to n and p, of the (expected) number of comparisons needed. It is also asymptotically optimal (when d is a fixed constant as n and p ). We also consider the dynamic version of the problem of d -dimensional max and min filters simultaneously on i.i.d. inputs where we want to maintain the filters after changes in the input array. We design a linear-sized data structure that stores precomputed information for efficient update using O(pd-12 p) expected comparisons per update. |
---|