Scanning optical microscopy for porosity quantification of additively manufactured components

Electron beam melting (EBM) is a representative powder-bed fusion additive manufacturing technology, which is suitable for producing near-net-shape metallic components with complex geometries and near-full densities. However, various types of pores are usually present in the additively manufactured...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wang, Pan, Tan, Xipeng, He, Chaoyi, Nai, Sharon Mui Ling, Huang, Ruoxuan, Tor, Shu Beng, Wei, Jun
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/139453
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Electron beam melting (EBM) is a representative powder-bed fusion additive manufacturing technology, which is suitable for producing near-net-shape metallic components with complex geometries and near-full densities. However, various types of pores are usually present in the additively manufactured components. These pores may affect mechanical properties, particularly the fatigue properties. Therefore, inspection of size, quantity and distribution of pores is critical for the process control and assessment of additively manufactured components. Here, we propose a method to quantify the pore size distribution and porosity of additively manufactured components by utilizing scanning optical microscopy. The advantages and limitations of the developed method are discussed based on the comparison study between Archimedes method, conventional optical microscopy and x-ray computed tomography. It is revealed that the new method exhibits the advantages of high precision (∼ 1.75 μm), more information, high repeatability and low time consumption (20 min/per sample). This provides a new metrology for measurement of not only pores but also micro-cracks, which are the common defects in additively manufactured components.