Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications
Pure and cobalt-substituted zinc ferrites were successfully synthesized employing a simple co-precipitation route. CoxZn0.04−xFe2O4 (x = 0, 0.01, 0.02) physical properties have been investigated employing comprehensive characterization studies. XRD results confirmed the cobalt substitution in zinc-f...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139553 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Pure and cobalt-substituted zinc ferrites were successfully synthesized employing a simple co-precipitation route. CoxZn0.04−xFe2O4 (x = 0, 0.01, 0.02) physical properties have been investigated employing comprehensive characterization studies. XRD results confirmed the cobalt substitution in zinc-ferrite magnetic ceramics. SEM analysis revealed non-uniform cluster formation with large agglomeration and more number of spherical grain nanoparticles in the range of 30–150 nm. Raman phonon vibration modes [F2g(1) + F2g(2) + A1g] revealed cubic zinc-ferrite phase and cobalt substitution. Product-predominant blue–green emission was observed in PL studies. IR results confirmed ferrite tetrahedral (~ 540–565cm−1) and octahedral sites’ (~ 428 cm−1) metal oxygen vibrations. Electrochemical studies confirmed an appreciable increase in specific capacitance of Co0.02Zn0.02Fe2O4 around 377 F/g at 10 mV/s scan rate. Cobalt substitution in zinc spinel ferrite structure revealed dominant influence on structural, optical, and electrochemical properties of the obtained product. |
---|