Ensemble incremental learning Random Vector Functional Link network for short-term electric load forecasting

Short-term electric load forecasting plays an important role in the management of modern power systems. Improving the accuracy and efficiency of electric load forecasting can help power utilities design reasonable operational planning which will lead to the improvement of economic and social benefit...

全面介紹

Saved in:
書目詳細資料
Main Authors: Qiu, Xueheng, Suganthan, Ponnuthurai Nagaratnam, Amaratunga, Gehan A. J.
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/139607
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Short-term electric load forecasting plays an important role in the management of modern power systems. Improving the accuracy and efficiency of electric load forecasting can help power utilities design reasonable operational planning which will lead to the improvement of economic and social benefits of the systems. A hybrid incremental learning approach composed of Discrete Wavelet Transform (DWT), Empirical Mode Decomposition (EMD) and Random Vector Functional Link network (RVFL) is presented in this work. RVFL network is a universal approximator with good efficiency because of the randomly generated weights between input and hidden layers and the close form solution for parameter computation. By introducing incremental learning, along with ensemble approach via DWT and EMD into RVFL network, the forecasting performance can be significantly improved with respect to both efficiency and accuracy. The electric load datasets from Australian Energy Market Operator (AEMO) were used to evaluate the effectiveness of the proposed incremental DWT-EMD based RVFL network. Moreover, the attractiveness of the proposed method can be demonstrated by the comparison with eight benchmark forecasting methods.