Remarks on multi-output Gaussian process regression
Multi-output regression problems have extensively arisen in modern engineering community. This article investigates the state-of-the-art multi-output Gaussian processes (MOGPs) that can transfer the knowledge across related outputs in order to improve prediction quality. We classify existing MOGPs i...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139612 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-139612 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1396122020-05-20T08:15:25Z Remarks on multi-output Gaussian process regression Liu, Haitao Cai, Jianfei Ong, Yew-Soon School of Computer Science and Engineering Rolls-Royce@NTU Corporate Lab Data Science and Artificial Intelligence Research Center Engineering::Computer science and engineering Multi-output Gaussian Process Symmetric/asymmetric MOGP Multi-output regression problems have extensively arisen in modern engineering community. This article investigates the state-of-the-art multi-output Gaussian processes (MOGPs) that can transfer the knowledge across related outputs in order to improve prediction quality. We classify existing MOGPs into two main categories as (1) symmetric MOGPs that improve the predictions for all the outputs, and (2) asymmetric MOGPs, particularly the multi-fidelity MOGPs, that focus on the improvement of high fidelity output via the useful information transferred from related low fidelity outputs. We review existing symmetric/asymmetric MOGPs and analyze their characteristics, e.g., the covariance functions (separable or non-separable), the modeling process (integrated or decomposed), the information transfer (bidirectional or unidirectional), and the hyperparameter inference (joint or separate). Besides, we assess the performance of ten representative MOGPs thoroughly on eight examples in symmetric/asymmetric scenarios by considering, e.g., different training data (heterotopic or isotopic), different training sizes (small, moderate and large), different output correlations (low or high), and different output sizes (up to four outputs). Based on the qualitative and quantitative analysis, we give some recommendations regarding the usage of MOGPs and highlight potential research directions. NRF (Natl Research Foundation, S’pore) 2020-05-20T08:15:25Z 2020-05-20T08:15:25Z 2018 Journal Article Liu, H., Cai, J., & Ong, Y.-S. (2018). Remarks on multi-output Gaussian process regression. Knowledge-Based Systems, 144, 102-121. doi:10.1016/j.knosys.2017.12.034 0950-7051 https://hdl.handle.net/10356/139612 10.1016/j.knosys.2017.12.034 2-s2.0-85040123192 144 102 121 en Knowledge-Based Systems © 2018 Elsevier B.V. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering Multi-output Gaussian Process Symmetric/asymmetric MOGP |
spellingShingle |
Engineering::Computer science and engineering Multi-output Gaussian Process Symmetric/asymmetric MOGP Liu, Haitao Cai, Jianfei Ong, Yew-Soon Remarks on multi-output Gaussian process regression |
description |
Multi-output regression problems have extensively arisen in modern engineering community. This article investigates the state-of-the-art multi-output Gaussian processes (MOGPs) that can transfer the knowledge across related outputs in order to improve prediction quality. We classify existing MOGPs into two main categories as (1) symmetric MOGPs that improve the predictions for all the outputs, and (2) asymmetric MOGPs, particularly the multi-fidelity MOGPs, that focus on the improvement of high fidelity output via the useful information transferred from related low fidelity outputs. We review existing symmetric/asymmetric MOGPs and analyze their characteristics, e.g., the covariance functions (separable or non-separable), the modeling process (integrated or decomposed), the information transfer (bidirectional or unidirectional), and the hyperparameter inference (joint or separate). Besides, we assess the performance of ten representative MOGPs thoroughly on eight examples in symmetric/asymmetric scenarios by considering, e.g., different training data (heterotopic or isotopic), different training sizes (small, moderate and large), different output correlations (low or high), and different output sizes (up to four outputs). Based on the qualitative and quantitative analysis, we give some recommendations regarding the usage of MOGPs and highlight potential research directions. |
author2 |
School of Computer Science and Engineering |
author_facet |
School of Computer Science and Engineering Liu, Haitao Cai, Jianfei Ong, Yew-Soon |
format |
Article |
author |
Liu, Haitao Cai, Jianfei Ong, Yew-Soon |
author_sort |
Liu, Haitao |
title |
Remarks on multi-output Gaussian process regression |
title_short |
Remarks on multi-output Gaussian process regression |
title_full |
Remarks on multi-output Gaussian process regression |
title_fullStr |
Remarks on multi-output Gaussian process regression |
title_full_unstemmed |
Remarks on multi-output Gaussian process regression |
title_sort |
remarks on multi-output gaussian process regression |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/139612 |
_version_ |
1681058226850758656 |