A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems

Nature-inspired algorithms are widely used in mathematical and engineering optimization. As one of the latest swarm intelligence-based methods, fruit fly optimization algorithm (FOA) was proposed inspired by the foraging behavior of fruit fly. In order to overcome the shortcomings of original FOA, a...

Full description

Saved in:
Bibliographic Details
Main Authors: Wu, Lei, Liu, Qi, Tian, Xue, Zhang, Jixu, Xiao, Wensheng
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/139628
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Nature-inspired algorithms are widely used in mathematical and engineering optimization. As one of the latest swarm intelligence-based methods, fruit fly optimization algorithm (FOA) was proposed inspired by the foraging behavior of fruit fly. In order to overcome the shortcomings of original FOA, a new improved fruit fly optimization algorithm called IAFOA is presented in this paper. Compared with original FOA, IAFOA includes four extra mechanisms: 1) adaptive selection mechanism for the search direction, 2) adaptive adjustment mechanism for the iteration step value, 3) adaptive crossover and mutation mechanism, and 4) multi-sub-swarm mechanism. The adaptive selection mechanism for the search direction allows the individuals to search for global optimum based on the experience of the previous iteration generations. According to the adaptive adjustment mechanism, the iteration step value can change automatically based on the iteration number and the best smell concentrations of different generations. Besides, the adaptive crossover and mutation mechanism introduces crossover and mutation operations into IAFOA, and advises that the individuals with different fitness values should be operated with different crossover and mutation probabilities. The multi-sub-swarm mechanism can spread optimization information among the individuals of the two sub-swarms, and quicken the convergence speed. In order to take an insight into the proposed IAFOA, computational complexity analysis and convergence analysis are given. Experiment results based on a group of 29 benchmark functions show that IAFOA has the best performance among several intelligent algorithms, which include five variants of FOA and five advanced intelligent optimization algorithms. Then, IAFOA is used to solve three engineering optimization problems for the purpose of verifying its practicability, and experiment results show that IAFOA can generate the best solutions compared with other ten algorithms.