Cope with diverse data structures in multi-fidelity modeling : a Gaussian process method
Multi-fidelity modeling (MFM) frameworks, especially the Bayesian MFM, have gained popularity in simulation based modeling, uncertainty quantification and optimization, due to the potential for reducing computational budget. In the view of multi-output modeling, the MFM approximates the high-/low-fi...
Saved in:
Main Authors: | Liu, Haitao, Ong, Yew-Soon, Cai, Jianfei, Wang, Yi |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/139701 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Remarks on multi-output Gaussian process regression
由: Liu, Haitao, et al.
出版: (2020) -
When Gaussian process meets big data : a review of scalable GPs
由: Liu, Haitao, et al.
出版: (2021) -
Understanding and comparing scalable Gaussian process regression for big data
由: Liu, Haitao, et al.
出版: (2020) -
MULTI-FIDELITY OPTIMIZATION WITH GAUSSIAN REGRESSION ON ORDINAL TRANSFORMATION SPACE
由: CHEN MIN
出版: (2017) -
AN ADAPTIVE MULTI-FIDELITY METHOD FOR SIMULATING PROGRESSIVE FAILURE IN COMPOSITE STRUCTURES
由: LEONG KARH HENG
出版: (2023)