Simulating stress wave with flat-top partition of unity based high-order discontinuous deformation analysis
Modelling the stress wave propagation in rock mass is a critical step to accurately assess the stability and damage of underground rock structures under dynamic loading. In this paper, the recently developed flat-top partition of unity (PU) based high-order approximation is coupled with Discontinuou...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139744 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Modelling the stress wave propagation in rock mass is a critical step to accurately assess the stability and damage of underground rock structures under dynamic loading. In this paper, the recently developed flat-top partition of unity (PU) based high-order approximation is coupled with Discontinuous Deformation Analysis (DDA) method to simulate stress wave propagation. In this method, the continuous blocks in DDA method are discretized by flat-top PU mesh, which is generated independently of the problem domain. High-order polynomials are employed as local displacement approximation to improve the numerical accuracy. Furthermore, non-reflective boundary is incorporated into this method to model the infinite problem domain. Numerical examples are presented and analyzed to verify the accuracy and efficiency of this method. |
---|