Multiobjective automated and autonomous intelligent load control for smart buildings
This paper deals with design of a real-time and versatile yet simple control and management strategy for provision of adaptive and intelligent demand response for buildings. The proposed three-phase multiobjective autonomous/automated intelligent load (MAIL3) control strategy offers the following su...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/139805 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This paper deals with design of a real-time and versatile yet simple control and management strategy for provision of adaptive and intelligent demand response for buildings. The proposed three-phase multiobjective autonomous/automated intelligent load (MAIL3) control strategy offers the following superiorities in a computationally-efficient approach: 1) by introducing voltage hopper technology, it can provide autonomous and automated grid ancillary service and load control without the need for a supervisory/centralized controller; 2) it can also track and realize regulation commands from an independent system operator; 3) it is applicable to buildings with hybrid AC/DC grids including AC and DC impedance loads, battery energy storage systems (BESSs), and variable frequency drives (VFDs); 4) it is a unified load control strategy for both grid-connected and islanded buildings with seamless transition between them; 5) as opposed to common on/off demand control techniques in the literature, the proposed method provides a continuous and adaptive demand control; and 6) the MAIL3 is based on a new control technique for voltage source converters using synchronous current converters technology. Extensive results are presented to demonstrate effectiveness of the method. |
---|