The transition from quantum field theory to one-particle quantum mechanics and a proposed interpretation of Aharonov–Bohm effect

In this article, we demonstrate a sense in which the one-particle quantum mechanics (OPQM) and the classical electromagnetic four-potential arise from the quantum field theory (QFT). In addition, the classical Maxwell equations are derived from the QFT scattering process, while both classical electr...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Benliang, Hewak, Daniel W., Wang, Qi Jie
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/139827
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this article, we demonstrate a sense in which the one-particle quantum mechanics (OPQM) and the classical electromagnetic four-potential arise from the quantum field theory (QFT). In addition, the classical Maxwell equations are derived from the QFT scattering process, while both classical electromagnetic fields and potentials serve as mathematical tools to approximate the interactions among elementary particles described by QFT physics. Furthermore, a plausible interpretation of the Aharonov–Bohm (AB) effect is raised within the QFT framework. We provide a quantum treatment of the source of electromagnetic potentials and argue that the underlying mechanism in the AB effect can be understood via interactions among electrons described by QFT theory where the interactions are mediated by virtual photons.