Bifunctional sulfonated MoO3 – ZrO2 binary oxide catalysts for the one-step synthesis of 2,5-diformylfuran from fructose

Sulfonated MoO3–ZrO2 binary oxides (MZS) with different Mo/Zr ratios were synthesized and applied as bifunctional catalysts for the simple one-pot transformation of fructose to 2,5-diformylfuran (DFF). The presence of Brønsted acid sites and the molybdenum oxide species in the catalysts is responsib...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao, Jun, Jayakumar, Anjali, Lee, Jong-Min
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/140009
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Sulfonated MoO3–ZrO2 binary oxides (MZS) with different Mo/Zr ratios were synthesized and applied as bifunctional catalysts for the simple one-pot transformation of fructose to 2,5-diformylfuran (DFF). The presence of Brønsted acid sites and the molybdenum oxide species in the catalysts is responsible for the high efficiency and good activity of the catalysts. The former contributes to a high yield of 5-hydroxymethylfurfural (HMF) in the fructose dehydration, and the latter has the role of catalyzing the selective aerobic oxidation of the resulted HMF into DFF. In optimized reaction conditions, DFF yield of 74% with fructose of 100% can be achieved in a one-step reaction. The catalyst can be separated, simply regenerated, and reused without any significant loss in activity, indicating its great potential for the industrial mass production of DFF from fructose.