Algebraic geometry codes with complementary duals exceed the asymptotic Gilbert-Varshamov bound
It was shown by Massey that linear complementary dual (LCD) codes are asymptotically good. In 2004, Sendrier proved that LCD codes meet the asymptotic Gilbert-Varshamov (GV) bound. Until now, the GV bound still remains to be the best asymptotical lower bound for LCD codes. In this paper, we show tha...
Saved in:
Main Authors: | Jin, Lingfei, Xing, Chaoping |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/140042 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Algebraic-geometry codes with asymptotic parameters better than the Gilbert-Varshamov and the Tsfasman-Vlǎduţ-Zink bounds
由: Xing, C.
出版: (2014) -
Goppa geometric codes achieving the Gilbert-Varshamov bound
由: Xing, C.
出版: (2014) -
Asymptotic bounds on quantum codes from algebraic geometry codes
由: Feng, K., et al.
出版: (2014) -
A generalization of algebraic-geometry codes
由: Xing, C., et al.
出版: (2013) -
Erasure List-Decodable Codes From Random and Algebraic Geometry Codes
由: Ding, Yang, et al.
出版: (2016)