Design of chirp waveforms for multiple-access ultrasonic indoor positioning
In ultrasonic positioning systems (UPSs) chirp waveforms have attracted much attention due to its high range resolution. However, the multiple-access schemes for the chirp-based UPS are limited. In its application to multiple-access ultrasonic positioning, effective waveform diversity design is a pr...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/140082 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | In ultrasonic positioning systems (UPSs) chirp waveforms have attracted much attention due to its high range resolution. However, the multiple-access schemes for the chirp-based UPS are limited. In its application to multiple-access ultrasonic positioning, effective waveform diversity design is a prerequisite. In a multiple-access UPS, each transmitter should transmit a unique waveform with impulse-like auto-correlation and relatively flat cross-correlations to the waveforms transmitted by other transmitters. Proposed in this paper is a methodology whereby multiple transmitters can transmit chirp signals simultaneously. The chirp waveforms are constructed by concatenating a number of linear sub-chirps of the same durations and bandwidths but different starting and stopping frequencies. This process is optimized by selecting sequences with impulse-like auto-correlations and relatively flat cross-correlations. First, the efficiency of the proposed methodology is evaluated by several metrics and, then, in an indoor environment, through simulations and experiments for ultrasonic positioning. |
---|