Design of bridge interconnect converter for Micro-Power Park (MPP)

The bridge-interconnect converter (BIC) plays an important role in the integration and facilitation of the Micro-Power Pack (MPP) with the AC electrical utility grid. It should ensure that the quality and reliability of the transfer of electrical power between the systems is sufficiently acceptable...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Ge Hao
Other Authors: Tang Yi
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/140119
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-140119
record_format dspace
spelling sg-ntu-dr.10356-1401192023-07-07T18:43:00Z Design of bridge interconnect converter for Micro-Power Park (MPP) Lim, Ge Hao Tang Yi School of Electrical and Electronic Engineering Energy Research Institute @NTU yitang@ntu.edu.sg Engineering::Electrical and electronic engineering::Electronic circuits Engineering::Electrical and electronic engineering The bridge-interconnect converter (BIC) plays an important role in the integration and facilitation of the Micro-Power Pack (MPP) with the AC electrical utility grid. It should ensure that the quality and reliability of the transfer of electrical power between the systems is sufficiently acceptable and that it should also provide a seamless transition from having no connection to the grid (islanded) to having connection to the grid (grid-connected), complying with the IEEE-1547 grid-code requirements. This project report demonstrates the study of the various components and the design of a bridge-interconnect converter with two control modes, Grid-Forming and Grid-Tied, to be simulated using the MATLAB Simulink software and to also test for its reliability and effectiveness in satisfying the above-mentioned criteria. The design includes important components necessary to control the converter effectively. The Park’s transformation (dq0- transformation) and three-phase phase locked loop (3ph-PLL) is used to provide necessary information and controls about the grid voltage for the synchronization of the converter. Using the proportional-integral (PI) controller in the control loop gives the appropriate corrective response for a minimal steady state error to achieve a greater power quality, such as low harmonic distortions, within the system. Pulse signals are generated using the space-vector pulse-width modulation (SVPWM) technique that produces less harmonic distortion to control the switching pattern of the transistors in the converter. An LCL- (inductor-capacitor-inductor) filter with passive damping resistor is connected at the interface between the converter and the electrical utility grid to attenuate the higher order unwanted harmonic distortions. Bachelor of Engineering (Electrical and Electronic Engineering) 2020-05-26T08:28:01Z 2020-05-26T08:28:01Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/140119 en B1178-191 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering::Electronic circuits
Engineering::Electrical and electronic engineering
spellingShingle Engineering::Electrical and electronic engineering::Electronic circuits
Engineering::Electrical and electronic engineering
Lim, Ge Hao
Design of bridge interconnect converter for Micro-Power Park (MPP)
description The bridge-interconnect converter (BIC) plays an important role in the integration and facilitation of the Micro-Power Pack (MPP) with the AC electrical utility grid. It should ensure that the quality and reliability of the transfer of electrical power between the systems is sufficiently acceptable and that it should also provide a seamless transition from having no connection to the grid (islanded) to having connection to the grid (grid-connected), complying with the IEEE-1547 grid-code requirements. This project report demonstrates the study of the various components and the design of a bridge-interconnect converter with two control modes, Grid-Forming and Grid-Tied, to be simulated using the MATLAB Simulink software and to also test for its reliability and effectiveness in satisfying the above-mentioned criteria. The design includes important components necessary to control the converter effectively. The Park’s transformation (dq0- transformation) and three-phase phase locked loop (3ph-PLL) is used to provide necessary information and controls about the grid voltage for the synchronization of the converter. Using the proportional-integral (PI) controller in the control loop gives the appropriate corrective response for a minimal steady state error to achieve a greater power quality, such as low harmonic distortions, within the system. Pulse signals are generated using the space-vector pulse-width modulation (SVPWM) technique that produces less harmonic distortion to control the switching pattern of the transistors in the converter. An LCL- (inductor-capacitor-inductor) filter with passive damping resistor is connected at the interface between the converter and the electrical utility grid to attenuate the higher order unwanted harmonic distortions.
author2 Tang Yi
author_facet Tang Yi
Lim, Ge Hao
format Final Year Project
author Lim, Ge Hao
author_sort Lim, Ge Hao
title Design of bridge interconnect converter for Micro-Power Park (MPP)
title_short Design of bridge interconnect converter for Micro-Power Park (MPP)
title_full Design of bridge interconnect converter for Micro-Power Park (MPP)
title_fullStr Design of bridge interconnect converter for Micro-Power Park (MPP)
title_full_unstemmed Design of bridge interconnect converter for Micro-Power Park (MPP)
title_sort design of bridge interconnect converter for micro-power park (mpp)
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/140119
_version_ 1772827824420290560