Design of FPGA based testing platform for modern memory

With the wide application of FPGA in communication industry, the security of deployed hardware has been an important issue for the major vendors of FPGAs (i.e., Intel, Xilinx, Microsemi, etc.). It has been proved that the adversary is able to launch remote attacks such as fault or side-channel attac...

Full description

Saved in:
Bibliographic Details
Main Author: Li, Zehao
Other Authors: Chang Chip Hong
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/140175
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-140175
record_format dspace
spelling sg-ntu-dr.10356-1401752023-07-07T18:40:17Z Design of FPGA based testing platform for modern memory Li, Zehao Chang Chip Hong School of Electrical and Electronic Engineering Centre for Integrated Circuits and Systems ECHChang@ntu.edu.sg Engineering::Electrical and electronic engineering With the wide application of FPGA in communication industry, the security of deployed hardware has been an important issue for the major vendors of FPGAs (i.e., Intel, Xilinx, Microsemi, etc.). It has been proved that the adversary is able to launch remote attacks such as fault or side-channel attacks to the different IP cores in an FPGA with hardware Trojans. In this report, a method of remote fault attack has been presented. It utilizes the existing loophole of dual port RAMs of an FPGA. With the opposite logic values write to same address simultaneously, the data stored in the bit cell will become undeterminable caused by transient short circuit of the back to back inverter. This phenomenon is called RAM collisions. If there are enough RAM collisions happening in a short time, there will be a serious voltage drop and heat generation of the FPGA board which may cause the bit-flip in the FPGA’s memory. The report describes the design, simulation and implementation of the RAM collision attack. The design components consist of a dual port ram module, two up and down counters, a PLL clock and an AES-128 encryption module. The AES-128 encryption is used to verify the bit-flip occurrence in the FPGA. Bachelor of Engineering (Electrical and Electronic Engineering) 2020-05-27T04:18:18Z 2020-05-27T04:18:18Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/140175 en application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering
spellingShingle Engineering::Electrical and electronic engineering
Li, Zehao
Design of FPGA based testing platform for modern memory
description With the wide application of FPGA in communication industry, the security of deployed hardware has been an important issue for the major vendors of FPGAs (i.e., Intel, Xilinx, Microsemi, etc.). It has been proved that the adversary is able to launch remote attacks such as fault or side-channel attacks to the different IP cores in an FPGA with hardware Trojans. In this report, a method of remote fault attack has been presented. It utilizes the existing loophole of dual port RAMs of an FPGA. With the opposite logic values write to same address simultaneously, the data stored in the bit cell will become undeterminable caused by transient short circuit of the back to back inverter. This phenomenon is called RAM collisions. If there are enough RAM collisions happening in a short time, there will be a serious voltage drop and heat generation of the FPGA board which may cause the bit-flip in the FPGA’s memory. The report describes the design, simulation and implementation of the RAM collision attack. The design components consist of a dual port ram module, two up and down counters, a PLL clock and an AES-128 encryption module. The AES-128 encryption is used to verify the bit-flip occurrence in the FPGA.
author2 Chang Chip Hong
author_facet Chang Chip Hong
Li, Zehao
format Final Year Project
author Li, Zehao
author_sort Li, Zehao
title Design of FPGA based testing platform for modern memory
title_short Design of FPGA based testing platform for modern memory
title_full Design of FPGA based testing platform for modern memory
title_fullStr Design of FPGA based testing platform for modern memory
title_full_unstemmed Design of FPGA based testing platform for modern memory
title_sort design of fpga based testing platform for modern memory
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/140175
_version_ 1772825298889342976