Representation learning on heterogeneous information networks
With the superiority of representation learning with deep learning being well demonstrated across various fields, representation learning on graphs has gained heated attention, leading to a wide range of Intriguing graph embedding models and techniques being developed and published. Moreover, with r...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/140340 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-140340 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1403402023-07-07T18:50:49Z Representation learning on heterogeneous information networks Zhu, Zhimo Lihui CHEN School of Electrical and Electronic Engineering elhchen@ntu.edu.sg Engineering::Electrical and electronic engineering With the superiority of representation learning with deep learning being well demonstrated across various fields, representation learning on graphs has gained heated attention, leading to a wide range of Intriguing graph embedding models and techniques being developed and published. Moreover, with recent advancements in generative adversarial learning, the fundamental idea of combining generative adversarial learning and graph representation learning has arisen and proven useful. This final year project focuses on critical review and analytical and empirical study of an existing approach HeGan [11] which combines representation learning on heterogeneous information network with generative adversarial learning. Through reviewing and analytical study on the existing researches, shortcomings of the HeGan framework are identified and some modifications have been proposed to address them. Furthermore, through extending HeGan framework and conducting experiments on benchmark datasets, the empirical study shows some advances beyond past research by demonstrating the proposed extended framework outperforms the existing framework under certain condition. Bachelor of Engineering (Electrical and Electronic Engineering) 2020-05-28T04:06:16Z 2020-05-28T04:06:16Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/140340 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering |
spellingShingle |
Engineering::Electrical and electronic engineering Zhu, Zhimo Representation learning on heterogeneous information networks |
description |
With the superiority of representation learning with deep learning being well demonstrated across various fields, representation learning on graphs has gained heated attention, leading to a wide range of Intriguing graph embedding models and techniques being developed and published. Moreover, with recent advancements in generative adversarial learning, the fundamental idea of combining generative adversarial learning and graph representation learning has arisen and proven useful. This final year project focuses on critical review and analytical and empirical study of an existing approach HeGan [11] which combines representation learning on heterogeneous information network with generative adversarial learning. Through reviewing and analytical study on the existing researches, shortcomings of the HeGan framework are identified and some modifications have been proposed to address them. Furthermore, through extending HeGan framework and conducting experiments on benchmark datasets, the empirical study shows some advances beyond past research by demonstrating the proposed extended framework outperforms the existing framework under certain condition. |
author2 |
Lihui CHEN |
author_facet |
Lihui CHEN Zhu, Zhimo |
format |
Final Year Project |
author |
Zhu, Zhimo |
author_sort |
Zhu, Zhimo |
title |
Representation learning on heterogeneous information networks |
title_short |
Representation learning on heterogeneous information networks |
title_full |
Representation learning on heterogeneous information networks |
title_fullStr |
Representation learning on heterogeneous information networks |
title_full_unstemmed |
Representation learning on heterogeneous information networks |
title_sort |
representation learning on heterogeneous information networks |
publisher |
Nanyang Technological University |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/140340 |
_version_ |
1772828469521022976 |