Design and implementation on an anomaly detection scheme supported by neural networks

Smart grids have the potential to create a revolution in the energy industry. Smart grids have multiple benefits ranging from financial, to social and most importantly, sustainability by allowing for easier reduction of dependence on non-renewable energy sources. However, the operation of smart grid...

Full description

Saved in:
Bibliographic Details
Main Author: Chia, Maximillian Khim Heng
Other Authors: Ma Maode
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/140382
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-140382
record_format dspace
spelling sg-ntu-dr.10356-1403822023-07-07T18:51:55Z Design and implementation on an anomaly detection scheme supported by neural networks Chia, Maximillian Khim Heng Ma Maode School of Electrical and Electronic Engineering emdma@ntu.edu.sg Engineering::Electrical and electronic engineering Smart grids have the potential to create a revolution in the energy industry. Smart grids have multiple benefits ranging from financial, to social and most importantly, sustainability by allowing for easier reduction of dependence on non-renewable energy sources. However, the operation of smart grids are vastly different from the traditional grids. With the requirement of bi-directional communication links and increased reliance on information and communication technology, the smart grids are vulnerable to security threats. Moreover,as it has been demonstrated in the past that any security breach in cyber-physical systems, such as the smart grids, catering to the critical sectors like energy can have massive social, economic and technological impacts and can take the organisations decades to recover. The smart grid networks characteristics such as heterogeneity, delay constraints, bandwidth, scalability, and others make it challenging to deploy uniform security approaches all over the networks segments. One approach to provide a second line of defense for the smart grid networks. In this work, various cyber security requirements are analysed and security threats are reviewed. Based on the guidelines a scalable online intrusion detection system is designed to act as the second line of defence for the smart grid. The design is then attempted to be implemented on python using Tensorflow 2. There were flaws during implementation using NSL-KDD dataset, hence comparison with other relevant implementations could not be done. Other publications on implementation of the design in other fields were observed and a hypothesis was made based off the successes and failures of those works. Bachelor of Engineering (Electrical and Electronic Engineering) 2020-05-28T08:20:14Z 2020-05-28T08:20:14Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/140382 en A3158-191 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering
spellingShingle Engineering::Electrical and electronic engineering
Chia, Maximillian Khim Heng
Design and implementation on an anomaly detection scheme supported by neural networks
description Smart grids have the potential to create a revolution in the energy industry. Smart grids have multiple benefits ranging from financial, to social and most importantly, sustainability by allowing for easier reduction of dependence on non-renewable energy sources. However, the operation of smart grids are vastly different from the traditional grids. With the requirement of bi-directional communication links and increased reliance on information and communication technology, the smart grids are vulnerable to security threats. Moreover,as it has been demonstrated in the past that any security breach in cyber-physical systems, such as the smart grids, catering to the critical sectors like energy can have massive social, economic and technological impacts and can take the organisations decades to recover. The smart grid networks characteristics such as heterogeneity, delay constraints, bandwidth, scalability, and others make it challenging to deploy uniform security approaches all over the networks segments. One approach to provide a second line of defense for the smart grid networks. In this work, various cyber security requirements are analysed and security threats are reviewed. Based on the guidelines a scalable online intrusion detection system is designed to act as the second line of defence for the smart grid. The design is then attempted to be implemented on python using Tensorflow 2. There were flaws during implementation using NSL-KDD dataset, hence comparison with other relevant implementations could not be done. Other publications on implementation of the design in other fields were observed and a hypothesis was made based off the successes and failures of those works.
author2 Ma Maode
author_facet Ma Maode
Chia, Maximillian Khim Heng
format Final Year Project
author Chia, Maximillian Khim Heng
author_sort Chia, Maximillian Khim Heng
title Design and implementation on an anomaly detection scheme supported by neural networks
title_short Design and implementation on an anomaly detection scheme supported by neural networks
title_full Design and implementation on an anomaly detection scheme supported by neural networks
title_fullStr Design and implementation on an anomaly detection scheme supported by neural networks
title_full_unstemmed Design and implementation on an anomaly detection scheme supported by neural networks
title_sort design and implementation on an anomaly detection scheme supported by neural networks
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/140382
_version_ 1772826855527677952