Graphene-supported bimetal phosphorus trisulfides as novel 0D – 2D nanohybrid for high rate Li-ion storage
Herein, we report on the synthesis and Li-ion storage properties of the 0D–2D nanohybrid consisted of bimetal phosphorus trisulfides nanoneedles (Co0.5Ni0.5PS3) and graphene nanosheets (denoted as Co0.5Ni0.5PS3@G). By choosing the Co0.5Ni0.5(OH)2 nanoneedles as precursor, the Co0.5Ni0.5PS3 derived b...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/140475 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Herein, we report on the synthesis and Li-ion storage properties of the 0D–2D nanohybrid consisted of bimetal phosphorus trisulfides nanoneedles (Co0.5Ni0.5PS3) and graphene nanosheets (denoted as Co0.5Ni0.5PS3@G). By choosing the Co0.5Ni0.5(OH)2 nanoneedles as precursor, the Co0.5Ni0.5PS3 derived by a simple solid-state transformation (SST) process was successfully attached onto the graphene surface. The as-prepared nanohybrids showed a superior cycling stability and rate performance for Li-ion storage. After cycling at a current density of 0.5 A g−1 for 500 cycles, the capacity are 456 mA h g−1. Particularly, the capacity can reach 302 mAh g−1 at a current density of 10 A g−1, which is 66.2% of the capacity at 0.5 A g−1. Even cycling at a current density of 50 A g−1, the nanocomposite can still kept a capacity of 153 mA h g−1 with a capacity retention of 33.6%. |
---|