Hybrid AC/DC system harmonics control through grid interfacing converters with low switching frequency

The nonlinear loads in distribution grid may generate harmful low-order harmonics, polluting the grid and deteriorating the voltage quality particularly when the grid is weak. The grid interfacing converters in the distribution system, such as the distributed generation (DG) interfacing converters o...

Full description

Saved in:
Bibliographic Details
Main Authors: Tian, Hao, Li, Yun Wei, Wang, Peng
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/140495
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The nonlinear loads in distribution grid may generate harmful low-order harmonics, polluting the grid and deteriorating the voltage quality particularly when the grid is weak. The grid interfacing converters in the distribution system, such as the distributed generation (DG) interfacing converters or hybrid ac/dc grid interlinking converters, can participate in distribution grid harmonic control. In this paper, two virtual-impedance-based harmonics control methods are developed for grid interfacing voltage-source inverters (VSIs) to improve the power quality of the distribution grid. As the control parameters are designed based on the virtual impedance theory, clear physical meanings are given to explain their impacts on the system. Also, the proposed methods do not rely on the closed loop feedback control and, therefore, are very suitable for VSIs with low switching frequency (such as those for high-power DGs or interlinking converters for hybrid ac/dc systems), whose closed-loop control feedback bandwidth may be limited for harmonic regulation. The influence of system delay and feedback control loop is considered and modeled in the design procedure; thus more accurate virtual impedance control is achieved for low-switching-frequency VSIs. Moreover, a comprehensive comparison of the two methods, including stability and harmonic compensation performance, are given. Their effectiveness is verified by experiment results.