Investigating FeVO4 as a cathode material for aqueous aluminum-ion battery

Developing an aluminum-ion aqueous battery is extremely attractive for prospects of creating a super cheap, environmentally friendly and safe energy storage system. However, a lack of reversible cathode materials hampers the use of metallic Al as a high-capacity anode in an aqueous electrolyte. As o...

Full description

Saved in:
Bibliographic Details
Main Authors: Kumar, Sonal, Satish, Rohit, Verma, Vivek, Ren, Hao, Kidkhunthod, Pinit, Manalastas, William, Jr., Srinivasan, Madhavi
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/140512
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Developing an aluminum-ion aqueous battery is extremely attractive for prospects of creating a super cheap, environmentally friendly and safe energy storage system. However, a lack of reversible cathode materials hampers the use of metallic Al as a high-capacity anode in an aqueous electrolyte. As opposed to insertion-type cathodes, the performance of conversion-type cathodes for Al-ion electrochemistry in an aqueous electrolytic environment remains poorly explored. As a first attempt to understand the performance of such conversion type materials for Al-ion intake, we herein report FeVO4 as a potential cathode material with a significantly high capacity of 350 mA h g−1. We use a combination of inhouse and synchrotron-based characterization techniques to confirm Al-ion electrochemical reaction with FeVO4, and also determine how electrolyte pH has a mechanistic influence on the reversibility of aluminum-ion aqueous batteries.