Human-building interaction under various indoor temperatures through neural-signal electroencephalogram (EEG) methods

In this study, potential of neural-signal electroencephalogram (EEG)-based methods for enhancing human-building interaction under various indoor temperatures were explored. Correlations between EEG and subjective perceptions/tasks performance were experimentally investigated. Machine learning-based...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Shan, Xin, Yang, En-Hua, Zhou, Jin, Chang, Victor Wei-Chung
مؤلفون آخرون: School of Civil and Environmental Engineering
التنسيق: مقال
اللغة:English
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/140866
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this study, potential of neural-signal electroencephalogram (EEG)-based methods for enhancing human-building interaction under various indoor temperatures were explored. Correlations between EEG and subjective perceptions/tasks performance were experimentally investigated. Machine learning-based EEG pattern recognition was further studied. Results showed that the EEG frontal asymmetrical activity related well to the subjective questionnaire and objective tasks performance, which can be used as a more objective metric to corroborate traditional subjective questionnaire-based methods and task-based methods. Machine learning-based EEG pattern recognition with linear discriminant analysis (LDA) classifiers can well classify the different mental states under different thermal conditions. Utilization of the EEG frontal asymmetrical activities and the machine learning-based EEG pattern recognition method as a feedback mechanism of occupants, which can be implemented on a routine basis, has a great potential to enhance the human-building interaction in a more objective and holistic way.