Quantile regression for additive coefficient models in high dimensions
In this paper, we consider quantile regression in additive coefficient models (ACM) with high dimensionality under a sparsity assumption and approximate the additive coefficient functions by B-spline expansion. First, we consider the oracle estimator for quantile ACM when the number of additive coef...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/140938 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, we consider quantile regression in additive coefficient models (ACM) with high dimensionality under a sparsity assumption and approximate the additive coefficient functions by B-spline expansion. First, we consider the oracle estimator for quantile ACM when the number of additive coefficient functions is diverging. Then we adopt the SCAD penalty and investigate the non-convex penalized estimator for model estimation and variable selection. Under some regularity conditions, we prove that the oracle estimator is a local solution of the SCAD penalized quantile regression problem. Simulation studies and an application to a genome-wide association study show that the proposed method yields good numerical results. |
---|