Automatic document summarization from social media and online news

This dissertation provides a new method for sentence embedding and document summarization. The topic model is utilized to modify the sentence embedding method SIF by capturing the information in the document, instead of relying on an external corpus. Thus, the modification embeds the information of...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Feng, Zijian
مؤلفون آخرون: Mao Kezhi
التنسيق: Thesis-Master by Coursework
اللغة:English
منشور في: Nanyang Technological University 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/141154
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:This dissertation provides a new method for sentence embedding and document summarization. The topic model is utilized to modify the sentence embedding method SIF by capturing the information in the document, instead of relying on an external corpus. Thus, the modification embeds the information of the entire document into the sentence vectors, which is beneficial for further information extraction. Then we employ the graph-based method to score the sentences and select the high-scoring sentences to form the summary. In addition, this dissertation also tested the impact of different parameter changes in the model. The experimental results show that the proposed model can beat other classic and advanced models in semantic analysis and summary extraction with strong robustness. The datasets used in this dissertation are from social media and online news, which proves the applicability of this model to online information extraction.