Deep learning based approach for channel estimation of CP-free OFDM system
In traditional orthogonal frequency division multiplexing (OFDM) system, the cyclic prefix (CP) is used as a guard interval between two successive symbols to overcome the inter-symbol interference (ISI). In addition, it repeats the end of symbol so that the linear convolution of multipath channel c...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Coursework |
Language: | English |
Published: |
Nanyang Technological University
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141303 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-141303 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1413032023-07-04T16:48:55Z Deep learning based approach for channel estimation of CP-free OFDM system Xiao, Xinhao Teh Kah Chan School of Electrical and Electronic Engineering EKCTeh@ntu.edu.sg Engineering::Electrical and electronic engineering::Wireless communication systems In traditional orthogonal frequency division multiplexing (OFDM) system, the cyclic prefix (CP) is used as a guard interval between two successive symbols to overcome the inter-symbol interference (ISI). In addition, it repeats the end of symbol so that the linear convolution of multipath channel can be modelled recycled. In this dissertation, we aim at OFDM systems, especially the CP-free OFDM system, which without CP insert between the successive symbols at transmission, and using Deep Learning (DL) based approach to address channel estimation problems. The LSTM neural network is established to improve the simulation performance. Indeed, we also investigate their performance with another two popular methods least square (LS) and minimum mean square error (MMSE) channel estimation, and compared with deep learning based approach under different channel models. The simulation results reveal that the Deep Learning (DL) based method obtains lower Bit Error Rates (BERs) when Signal Noise Ratio (SNR) increases. We will also show that, when using the Deep Learning method, the receiver is robust in various situations, such as CP or CP-free system and different pilots number system. DL based approach has better performance than those competitive algorithms in most time. Master of Science (Communications Engineering) 2020-06-07T04:47:03Z 2020-06-07T04:47:03Z 2020 Thesis-Master by Coursework https://hdl.handle.net/10356/141303 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering::Wireless communication systems |
spellingShingle |
Engineering::Electrical and electronic engineering::Wireless communication systems Xiao, Xinhao Deep learning based approach for channel estimation of CP-free OFDM system |
description |
In traditional orthogonal frequency division multiplexing (OFDM) system, the cyclic prefix (CP) is used as a guard interval between two successive symbols to overcome the inter-symbol interference (ISI). In addition, it repeats the end of symbol so that the linear convolution of multipath channel can be modelled recycled. In this dissertation, we aim at OFDM systems, especially the CP-free OFDM system, which without CP insert between the successive symbols at transmission, and using Deep Learning (DL) based approach to address channel estimation problems. The LSTM neural network is established to improve the simulation performance. Indeed, we also investigate their performance with another two popular methods least square (LS) and minimum mean square error (MMSE) channel estimation, and compared with deep learning based approach under different channel models. The simulation results reveal that the Deep Learning (DL) based method obtains lower Bit Error Rates (BERs) when Signal Noise Ratio (SNR) increases. We will also show that, when using the Deep Learning method, the receiver is robust in various situations, such as CP or CP-free system and different pilots number system. DL based approach has better performance than those competitive algorithms in most time. |
author2 |
Teh Kah Chan |
author_facet |
Teh Kah Chan Xiao, Xinhao |
format |
Thesis-Master by Coursework |
author |
Xiao, Xinhao |
author_sort |
Xiao, Xinhao |
title |
Deep learning based approach for channel estimation of CP-free OFDM system |
title_short |
Deep learning based approach for channel estimation of CP-free OFDM system |
title_full |
Deep learning based approach for channel estimation of CP-free OFDM system |
title_fullStr |
Deep learning based approach for channel estimation of CP-free OFDM system |
title_full_unstemmed |
Deep learning based approach for channel estimation of CP-free OFDM system |
title_sort |
deep learning based approach for channel estimation of cp-free ofdm system |
publisher |
Nanyang Technological University |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/141303 |
_version_ |
1772827614041341952 |