The influence of microstructures of AM-316L stainless steel on mechanical properties

Additive Manufacturing (AM) is a widely employed method to fabricate small to medium lot sizes of macro-components. In lieu of the increasing appeal for miniaturization, the focus is directed towards manufacturing micro and nanofeatures via AM. Selective Laser Melting (SLM) and Direct Energy Deposit...

全面介紹

Saved in:
書目詳細資料
主要作者: Chen, Kwok Fong
其他作者: Li Hua
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2020
主題:
在線閱讀:https://hdl.handle.net/10356/141380
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Additive Manufacturing (AM) is a widely employed method to fabricate small to medium lot sizes of macro-components. In lieu of the increasing appeal for miniaturization, the focus is directed towards manufacturing micro and nanofeatures via AM. Selective Laser Melting (SLM) and Direct Energy Deposition (DED) are two of the most common AM techniques to fabricate metal components. This project aims to understand the influence of the microstructure of the fabricated samples on its mechanical properties. The manufactured part quality was analyzed for its defects and microstructure. A correlation between the microstructure and mechanical properties like tensile strength, yield strength and elongation were observed through machine learning algorithms like support vector machines. Microstructures of the samples were crucial in the understanding of any hidden correlations, which differ significantly according to the process conditions. The findings from this research will greatly speed up the process of characterizing fabricated samples in the future.