Mechanical properties of polyamide 11 and thermoplastic polyurethane polymers fabricated by multi jet fusion

Additive manufacturing is a process whereby parts are produced layer wise. One of the processes in additive manufacturing the multi jet fusion (MJF) technique from HP, which became available commercially in 2016. In this technique, the material powder is thermally fused layer by layer via an infrare...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Sean
Other Authors: Zhou Kun
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2020
Subjects:
Online Access:https://hdl.handle.net/10356/141386
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-141386
record_format dspace
spelling sg-ntu-dr.10356-1413862023-03-04T19:44:49Z Mechanical properties of polyamide 11 and thermoplastic polyurethane polymers fabricated by multi jet fusion Lim, Sean Zhou Kun School of Mechanical and Aerospace Engineering kzhou@ntu.edu.sg Engineering::Mechanical engineering Additive manufacturing is a process whereby parts are produced layer wise. One of the processes in additive manufacturing the multi jet fusion (MJF) technique from HP, which became available commercially in 2016. In this technique, the material powder is thermally fused layer by layer via an infrared heat source. Polymer powders have been adopted in the MJF process, with polyamide 12 being one of the most used. Other polymers such as polyamide 11 (PA11) and thermoplastic polyurethane (TPU) are also feasible in this process, creating possibilities to manufacture parts with different properties. However, not much research has been published with these 2 polymer powders as the material in MJF. As such, this report seeks to systematically investigate the use of PA11 and TPU in the MJF process. In this project, MJF 3D printed PA11 and TPU samples underwent various tests to determine their properties. Tensile tests, flexural tests, thermal analyses and surface roughness were carried out to investigate the tensile, flexural, thermal and surface roughness properties of the samples. From the results, the research published in this report can then be used for future research involving these 2 polymer powders in MJF. Bachelor of Engineering (Mechanical Engineering) 2020-06-08T04:24:17Z 2020-06-08T04:24:17Z 2020 Final Year Project (FYP) https://hdl.handle.net/10356/141386 en B278 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Mechanical engineering
spellingShingle Engineering::Mechanical engineering
Lim, Sean
Mechanical properties of polyamide 11 and thermoplastic polyurethane polymers fabricated by multi jet fusion
description Additive manufacturing is a process whereby parts are produced layer wise. One of the processes in additive manufacturing the multi jet fusion (MJF) technique from HP, which became available commercially in 2016. In this technique, the material powder is thermally fused layer by layer via an infrared heat source. Polymer powders have been adopted in the MJF process, with polyamide 12 being one of the most used. Other polymers such as polyamide 11 (PA11) and thermoplastic polyurethane (TPU) are also feasible in this process, creating possibilities to manufacture parts with different properties. However, not much research has been published with these 2 polymer powders as the material in MJF. As such, this report seeks to systematically investigate the use of PA11 and TPU in the MJF process. In this project, MJF 3D printed PA11 and TPU samples underwent various tests to determine their properties. Tensile tests, flexural tests, thermal analyses and surface roughness were carried out to investigate the tensile, flexural, thermal and surface roughness properties of the samples. From the results, the research published in this report can then be used for future research involving these 2 polymer powders in MJF.
author2 Zhou Kun
author_facet Zhou Kun
Lim, Sean
format Final Year Project
author Lim, Sean
author_sort Lim, Sean
title Mechanical properties of polyamide 11 and thermoplastic polyurethane polymers fabricated by multi jet fusion
title_short Mechanical properties of polyamide 11 and thermoplastic polyurethane polymers fabricated by multi jet fusion
title_full Mechanical properties of polyamide 11 and thermoplastic polyurethane polymers fabricated by multi jet fusion
title_fullStr Mechanical properties of polyamide 11 and thermoplastic polyurethane polymers fabricated by multi jet fusion
title_full_unstemmed Mechanical properties of polyamide 11 and thermoplastic polyurethane polymers fabricated by multi jet fusion
title_sort mechanical properties of polyamide 11 and thermoplastic polyurethane polymers fabricated by multi jet fusion
publisher Nanyang Technological University
publishDate 2020
url https://hdl.handle.net/10356/141386
_version_ 1759857107733053440