Nonexistence results on generalized bent functions Zqm→Zq with odd m and q ≡ 2 (mod 4)
Let p be an odd prime, let a be a positive integer, let m be an odd positive integer, and suppose that a generalized bent function from Z2pam to Z2pa exists. We show that this implies m≠1, p≤22m+2m+1, and ordp(2)≤2m−1. We obtain further necessary conditions and prove that p=7 if m=3 and p∈{7,23,31,7...
Saved in:
Main Authors: | , |
---|---|
其他作者: | |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/141391 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|