Nitrogen doped cuprous oxide as low cost hole-transporting material for perovskite solar cells

Substituting expensive traditional hole transporting material (HTM) with cheaper inorganics is a key factor for perovskite photovoltaics commercialization. Cu2O is a promising p-type semiconductor exhibiting good band-alignment with perovskite. However, due to solvent and temperature incompatibility...

Full description

Saved in:
Bibliographic Details
Main Authors: Han, Guifang, Du, Wen Han, An, Bao-Li, Bruno, Annalisa, Leow, Shin Woei, Soci, Cesare, Zhang, Sam, Mhaisalkar, Subodh Gautam, Mathews, Nripan
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/141529
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Substituting expensive traditional hole transporting material (HTM) with cheaper inorganics is a key factor for perovskite photovoltaics commercialization. Cu2O is a promising p-type semiconductor exhibiting good band-alignment with perovskite. However, due to solvent and temperature incompatibility, Cu2O is typically employed in inverted configuration, where an even more expensive, unstable Phenyl-C61-butyric acid methyl ester is necessary as an electron-transporting layer. Therefore, we explored the use of sputtered nitrogen-doped Cu2O directly on halide-perovskite as a HTM. With a thin interfacial layer, efficiency of 15.73% was achieved. This work indicates the possibility of low cost sputtered inorganics as HTM for efficient perovskite photovoltaics.