All-fiber short-wavelength tunable mode-locked fiber laser using normal dispersion thulium-doped fiber
We report an all-fiber high pulse energy ultrafast laser and amplifier operating at the short wavelength side of the thulium (Tm) emission band. An in-house W-type normal dispersion Tm-doped fiber (NDTDF) exhibits a bending-induced distributed short-pass filtering effect that efficiently suppresses...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141563 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We report an all-fiber high pulse energy ultrafast laser and amplifier operating at the short wavelength side of the thulium (Tm) emission band. An in-house W-type normal dispersion Tm-doped fiber (NDTDF) exhibits a bending-induced distributed short-pass filtering effect that efficiently suppresses the otherwise dominant long wavelength emission. By changing the bending diameter of the fiber, we demonstrated a tunable mode-locked Tm-doped fiber laser with a very wide tunable range of 152 nm spanning from 1740 nm to 1892 nm. Pulses at a central wavelength of 1755 nm were able to be amplified in an all-fiber configuration using the W-type NDTDF, without the use of any artificial short-pass filter or pulse stretcher. The all-fiber amplifier delivers 2.76 ps pulses with an energy of ∼32.7 nJ without pulse break-up, due to the normal dispersion nature of the gain fiber, which marks so far, the highest energy amongst fiber lasers in the 1700 nm-1800 nm region. |
---|